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Purpose. To design a parsimonious population pharmacodynamic ex-
periment that has the same or greater efficiency than that provided by
two phase I studies.
Methods. The design was based on optimization of the population
Fisher information matrix. Options for optimization were (1) deter-
mination of the optimal sampling times for each group (“group” rep-
resents a group of subjects that have identical design characteristics),
(2) determination of the optimal doses for each group, and (3) de-
termination of the optimal group structure.
Results. (1) Optimizing the sampling times, while retaining only four
unique times per group, provided a more parsimonious experiment
with the same efficiency as the original “study” that involved on
average 10 samples per subject. Splitting sampling times between the
first dose and a steady-state dose gave the most informative design.
(2) The optimal dose was the same in all groups and was the upper
bound of the dose range. (3) The optimal population design consisted
of only one group with four unique sampling times that are the same
for all subjects.
Conclusion. A population pharmacodynamic trial design is presented
that is more parsimonious than the original study and would be ap-
propriate for inclusion in a premarketing clinical study.

KEY WORDS: pharmacodynamics; ivabradine; optimal design;
population analysis; Fisher information matrix.

INTRODUCTION

Ivabradine is a novel negative chronotropic agent that
has been developed for the prevention of myocardial isch-
aemia. Both the parent and the N-dealkylated metabolite,
S-18982, have been shown to decrease heart rate (1). Further
details and the chemical structure have been described pre-
viously (1). The pharmacokinetics of ivabradine and S-18982
have been described by two linked two-compartment models
with first-order absorption, first-pass loss, and first-order
elimination (2). The effect of ivabradine and S-18982 on ex-
ercise-induced tachycardia was found to be described best by
a multiple ligand model (3). The pharmacokinetic and phar-
macodynamic data were obtained from two phase I trials that
included 78 healthy male volunteers.

There are several recent articles addressing optimal
population design issues without the use of extensive simula-

tions (4–6). The methods for determining the population
Fisher information matrix (PF) for nonlinear mixed effects
models are described in those papers and are not discussed
here. The method used here, proposed by Mentré et al. (4),
requires that the model be linearized using a first-order Tay-
lor series expansion about the random effects terms. Choos-
ing design points from the design space (including the pos-
sible sampling times, doses, and number of patients) that
maximizes some measure of PF will yield an optimal popula-
tion design. Given that the measure of PF is proportional to
the number of patients and indirectly proportional to the
number of samples per patient, an upper constraint is invoked
to avoid designs that become impractical clinically (6).

This paper focuses on the design of a population phar-
macodynamic experiment where it is desirable to obtain ac-
curate parameter estimates for both the fixed effects and ran-
dom effects components (including residual variance) for a
nonlinear pharmacodynamic model. To achieve this, a D-
optimal design criteria was chosen where the goal is to maxi-
mize the determinant of the information matrix (7). Because
the inverse of the Fisher information matrix is the lower
bound of the estimation variance matrix, this is equivalent to
minimizing the determinant of the variance matrix (8).

The aim of this study was to design a more parsimonious
clinical trial for the estimation of the pharmacodynamic pa-
rameters that is at least as efficient as the combined two origi-
nal phase I trials (termed “baseline trial design”). Others
have shown, although not using optimal design criteria, that
many early phase population trial designs can be simplified
without significant loss of information (see Cosson and Fu-
seau (9) for a recent example). It was our intention to exam-
ine this process using optimality criteria.

METHODS

Pharmacodynamic Model

The pharmacokinetic and pharmacodynamic models for
ivabradine and S-18982 have been described previously (2,3).
The pharmacodynamic model that best described the heart
rate effects of ivabradine and S-18982 from two phase I trials
was a multiple ligand model.

E =
CI ? EmaxI

EC50I~1 + CS/EC50S! + CI
+

CS ? EmaxS

EC50S~1 + CI/EC50I! + CS

where Emax is the maximum effect, EC50 is the concentration
at which 50% of the maximum effect is achieved, C is the
concentration of either ivabradine or S-18982 in the biophase
provided from the pharmacokinetic model, and the subscripts
I and S represent ivabradine or S-18982, respectively. The
sigmoidicity parameter (g) was fixed at 1 and is therefore not
shown in the model.

The effect E computed from the above expression rep-
resents a change from baseline, and the model to describe the
expected heart rate at a given time is computed as E0 − E. In
a more general sense, the heart rate for the ith individual for
the jth measurement is given by:

HRij 4 f(Ci,u,xij) + «ij

where Ci denotes the vector of pharmacodynamic parameters
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for the ith individual, u is a vector of population pharmaco-
kinetic parameters, xij is a vector of independent variables
such as dose and time, and « is an i.i.d. error term with a
distribution given by N(0,s2).

For the experimental designs that were investigated, the
pharmacokinetic parameters were fixed at their mean popu-
lation values estimated previously (2) and considered as
known independent variables. This reduces the population
model to a pharmacodynamic problem of 15 population pa-
rameters; 7 fixed effect parameters, E0, EmaxI, EmaxS, EC50I,
EC50S, and the rate constants for elimination of drug and
metabolite from the effect site KeoI and KeoS; 7 variances of
between-subject random effects parameters (corresponding
to the above fixed effect parameters); and the variance of the
residual error. In the original study it was found that Emax
and EC50 could not be estimated both for ivabradine and
S-18982 (3). Hence, EmaxS was fixed to be equal to EmaxI

and EC50S was to 1.2 × EC50I (3). The model was reduced
further by fixing KeoS to 10 h−1 and the between-subject vari-
ance of KeoS to zero (previously estimated to be <3%). The
final population pharmacodynamic model had nine param-
eters. The population pharmacokinetic and pharmacody-
namic parameter values are given in Table 1.

Resolution and Clustering

The concept of resolution and clustering has been dis-
cussed previously (10). Resolution is defined in this study as
the maximum difference between two design points that is
considered a priori to be nonsignificant. Clustering refers to a
cluster of design points that occur within an acceptable level
of resolution. For pharmacokinetic experiments the effect of
clustering is often ignored (11). This is not possible for many
pharmacodynamic experiments where the duration of taking
the sample may be prolonged. Cluster identification was con-
sidered after the minimization process was terminated (ex-
cept where stated otherwise).

Design Optimization Features

A population design is composed of a number of groups,
each group composed of a number of individuals. In this set-
ting the term group is used to describe a collection of subjects
that have identical design characteristics given by the number
and timing of samples and the dose. This makes determina-
tion of optimal designs for mixed effect models necessarily
more complex than standard regression model designs. We
consider the problem within the framework of three design
options: (a) determination of the optimal sampling times for
each group, (b) determination of optimal doses for each
group, and (c) determination of the optimal group structure.
These are discussed below.

Baseline Trial Design

The baseline trial design (BTD)—a concatenation of 2
phase I trials (2,3)—consisted of a total of 768 exercise-
induced heart rate observations (Ntot 4 768) on 78 subjects
over a 156-h period. Most observations were sampled on the
first and last dose. There were nine groups. For each group
the total number of samples per subject was 12, 16, 16, 8, 8, 8,
8, 8, and 8, the number of subjects was 12, 9, 9, 8, 8, 8, 8, 8, and
8, and dose rate was 0, 10, 20, 8, 16, 20, 24, 28, and 32 mg every
12 h. This baseline trial design was evaluated both for the final
population pharmacodynamic model with 9 population pa-
rameters (BTD-9), which all optimal designs were subse-
quently compared to, and for the full model with 15 popula-
tion parameters (BTD-15) with the lognormal variance of
EmaxS and EC50S arbitrarily set to 0.1.

Option 1: Optimal Sampling Times

The design variables were the sampling times for the
groups and the design space was continuous over the poten-
tial range of the study period, i.e., 0–156 h. Those sampling
times that maximized the determinant of PF were considered
optimal conditional on all the other features of the baseline
trial design (i.e., number of groups, the dose amount for each
group, and the number of subjects per group). The sampling
times were set to be the same for all subjects within each
group, but were allowed to vary between groups.

The total number of samples per subject was fixed to 4,
the same as the number of fixed effect parameters (i.e., Ntot 4
312). Design strategies that were tried included: (i) all
samples were taken off the first dose, (ii) all samples were
taken off the last dose, and (iii) samples were split between
the first and last dose. In the last strategy, three splits were

Table 1. Population Pharmacokinetic and Pharmacodynamic Param-
eter Values Used for the Design

Parameter
(units)

Fixed
effects

Between-subject
variance

Population
distribution

CLI (L ? h−1) 27.4 Fixed n/a
V1I (L) 216 Fixed n/a
CLDI (L ? h−1) 73.5 Fixed n/a
V2I (L) 644 Fixed n/a
Ka (h−1) 2.1 Fixed n/a
FI 0.82 Fixed n/a
TLAG (h) 0.22 Fixed n/a
CLS (L ? h−1) 136 Fixed n/a
V1S (L) 92.4 Fixed n/a
CLDS (L ? h−1) 230 Fixed n/a
V2S (L) 635 Fixed n/a
E0 (bpm) 169 73.4 Normal
EmaxI (bpm) 77.4 0.0346 Log normal
EC50I (mcg ? L−1) 71.4 0.0525 Log normal
EmaxS (bpm) 77.4a n/a n/a
EC50S (mcg ? L−1) 85.7b n/a n/a
KeoI (h−1) 0.172 0.165 Log normal
KeoS (h−1) 10c 0 n/a
s2 5.40 0 Normald

n/a: Not applicable.
CL: Clearance.
V1: Volume of distribution of the central compartment.
CLD: Distributional clearance.
V2: Volume of distribution of the peripheral compartment.
Ka: Absorption rate constant.
FI: Fraction of ivabradine that reaches the systemic circulation intact.
TLAG: Lag-time of absorption.
a Fixed to EmaxI.
b Fixed to 1.2 × EC50I.
c Fixed value with no variability.
d The residual error was considered to be additive and normally dis-

tributed with variance given by s2. Subscripts I and S represent
ivabradine and S-18982, respectively.
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possible: split 1/3, 2/2, and 3/1 denoting 1, 2, or 3 samples from
the first dose and 3, 2, or 1 from the last dose, respectively.
The resolution for the design points was set to 0.5 h, based on
the smallest time difference between any two measurements
in the baseline trial design.

Option 2: Optimal Dose Levels

The design variables were the dose for each of the groups
and the design space was given by the range of discrete dose
levels used in the baseline trial design, i.e., 0, 8, 10, 16, 20, 24,
28, and 32 mg every 12 h. The dose interval was fixed and not
subject to optimization. In addition to the doses, all other
features of the baseline trial design were maintained the same
so that Ntot 4 768. Consideration of resolution was unneces-
sary.

Option 3: Optimal Group Structure

This option involves locating the optimal group struc-
ture, i.e., the number of groups, the number of subjects in
each group, and the corresponding sampling times. The maxi-
mum number of groups was set to 4 (equal to the number of
fixed effect parameters). Groups were “lumped” if the dose
levels were the same and the sampling times where within
acceptable resolution. The sample time of each observation
was optimized in the procedure, although the fractional split
of samples between the first and last dose was fixed at the best
split found in option 1. The design constraint was given by the
total number of heart-rate observations (Ntot 4 312). The
number of samples per subject ni and subjects per group Nk

was allowed to vary from 1 to 8 and 9 to 78, respectively, such
that: Nk × ni × 4 4 Ntot 4 312.

Optimization Method

The maximization procedure used here is based on a
local exact design optimization. The design is said to be local
because it depends on the pharmacodynamic parameter
value, compared to the robust designs where prior distribu-
tions of the parameter values are given (5,12). It is called an
exact design because the optimization is performed with re-
spect to the variables designing the experiment, compared to
approximate or statistical design (4,8), where a distribution of
the experimental effort is assumed.

Optimization was performed using a two-stage process to
find the minimum of the inverse of the determinant of PF.
The software was written within the framework provided by
MATLAB (version 5.3). The MATLAB code (PFIM) for
evaluating PF has been described previously (13). For stage 1,
a nonadaptive random search was performed to locate the
design points that yield a global minimum; see Tod and Roc-
chisani (14) for a description, and D’Argenio (12) for an ex-
ample. For stage 2, a simplex algorithm was used to find the
optimal design where one of the vertices of the simplex was
set to the best design points from stage 1. Two runs were
performed for each of the final optimization procedures for
options 1–3. If this produced the same result, then the two
stage method was considered to have found at least a local
minimum. In all cases it remains unknown whether a true
minimum was found in any of the following optimization re-
sults.

Design Efficiency

Population designs for the pharmacodynamic experiment
were compared based on two criteria. First, the efficiency (7)
of the design, and second, comparison of the standard errors
of the population parameters. The relative efficiency (Ef) of
design j1 with respect to the baseline trial design j0 is de-
fined as

Ef = Sdet@PFC~j1!#

det@PFC~j0!#
D1/p

where p is the number of population parameters and hence
the dimension of PFC.

We also compared the expected standard errors of the
parameters. These were computed as the square root of the
diagonal elements of the inverse of PF.

Sensitivity Analysis and Sampling Windows

The marginal sensitivity of the optimal population design
from option 3 to specification of the fixed effect pharmaco-
kinetic population mean parameter values was examined. To
do this, the value of the normalized determinant of PF was
evaluated for several values of each of the pharmacokinetic
mean parameters over the range given by 50% and 200% of
its mean value used in these analyses. An important change in
the normalized determinant was arbitrarily chosen to be a
reduction of 5%.

Using the optimal sampling times from the best result of
the option 3 analysis, we estimated the marginal window as-
sociated with each optimal sampling time point. The marginal
sampling windows were estimated by fixing all sampling times
except the time of interest and then varying this time until the
normalized determinant was reduced by 5%.

RESULTS

Baseline Trial Design

The determinant of PF for the design where there were
15 parameters (BTD-15) was very small and the matrix was
close to singular. As described previously, the model was
reparameterized to include only 9 parameters (BTD-9). The
standard errors of this and subsequent designs are given in
Table 2.

The relative efficiency of BTD-15 was 0.011 compared to
BTD-9. The fixed effect population parameters and the be-
tween-subject variance of EmaxS and EC50S were estimated
poorly (shown in Table 2). This suggests that the full phar-
macodynamic model (BTD-15) was deterministically uniden-
tifiable.

Optimization of Sampling Times (Option 1)

The results of the different design strategies based on
four sampling times are given in Tables 2 and 3. It is seen that
the most efficient sampling strategy is one in which the
samples were split between the first and last dose. For each
design, the projected number of samples (equivalent Ntot) and
subjects (equivalent N) required to give the same efficiency as
BTD-9 was computed by maintaining the same sampling
strategy per group but increasing the number of subjects in
each group (Table 3).
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Optimization of Doses (Option 2)

Optimization of dose while retaining the original group
structure yielded the same dose for all groups. The optimal
dose was the highest available dose (32 mg) and gave a rela-
tive efficiency of 143% (see Tables 2 and 3).

Optimization of Group Structure (Option 3)

The results of option 3 are presented in Tables 2 and 4.
It should be recalled that the dose is that provided by option
2 and the maximum number of groups was set to 4. The
optimal design was one where there were 4 samples per sub-
ject and 19 subjects in two groups and 20 subjects in two
groups. Increasing or decreasing the number of observations

per subject was associated with lower efficiency. The sam-
pling times for the optimal design were the same for all
groups and were 0.2, 2.8, 12.0, and 148.0 h (the 148-h sampling
time representing a sample taken at 4 h after the last dose).
The design was therefore simplified to a single group of 78
subjects. Increasing the number of observations to 340 (i.e., 7
extra subjects) for the optimal design from this option af-
forded an equally efficient while more parsimonious design.

Most parameters were estimated with good precision ex-
cept the population mean value of KeoI and the between-
subject variance of EC50I and KeoI (Table 2). On the basis of
the optimal design from option 3, about 350 subjects (1400
heart rate observations) would be needed in order to reduce
the standard errors of KeoI and the between-subject variance
of EC50I to 25 and 55%, respectively.

Table 2. Predicted Coefficient of Variation (%) of the Estimation Error of the Population
Pharmacodynamic Parameters for the Various Designs

Study designs

BTD 15
Ntot 4 768

BTD 9
Ntot 4 768

Option 1
Ntot 4 312

Option 2
Ntot 4 768

Option 3
Ntot 4 312

Fixed effect parameters
E0 0.67 0.65 0.71 0.66 0.68
Emax

I
0.14 0.095 0.12 0.070 0.064

EC50I 1.7 0.20 0.25 0.15 0.16
EmaxS 70.4 NE NE NE NE
EC50S 92.4 NE NE NE NE
KeoI 100 56.7 67.2 48.8 52.4
KeoS 1.1 NE NE NE NE

Random effect parameters
vE0 18.5 18.6 20.1 19.2 20.1
vEmaxI

53.8 52.9 78.7 38.2 40.0
vEC50I

128 127 180 102 119
vEmaxS

>1000 NE NE NE NE
vEC50S

>1000 NE NE NE NE
vKeoI

55.0 54.9 71.1 41.3 57.5
vKeoS

>1000 NE NE NE NE
Residual error

s2 7.8 5.9 12.2 6.01 15.6

NE: Not estimated.

Table 3. Optimal Design Using Options 1 and 2

Design

Relative
efficiencya

(%)

Total number
of observations

(Ntot)
Equivalent Ntot

(equivalent N)

Baseline trial 100 768 768 (N/A)
Option 1: sampling times (ni 4 4; doses, Nk and k same as the baseline trial design)

First dose study 22 312 1418 (355)
Last dose study 17 312 1835 (459)
Split 1/3b 45 312 693 (174)
Split 2/2b 59 312 529 (132)
Split 3/1b 60 312 524 (131)

Option 2: doses (ni, Nk, k same as the baseline trial design)
All groups receive 32 mg 143 768 537 (54)

ni: Number of observations per subject; Nk: number of subjects per group; k: number of
groups; N: total number of subjects in the trial.
a All designs are compared to the baseline trial design.
b The samples were split between the first dose and last dose, e.g., split 2/2 indicates that

two samples were taken off the first dose and two were taken off the last dose.
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Sensitivity Analysis and Optimal Sampling Windows

The sensitivity of the efficiency of the optimal design
from option 3 with respect to variation of each of the 11 mean
population pharmacokinetic parameters was evaluated. The
change in the normalized determinant of PF for the range of
fixed effect pharmacokinetic parameter values is shown for
three representative parameters CLI, CLDI, and V2I (Fig. 1).
For the parameters V2I, Ka, CLS,V1S, CLDS, V2S, FI, and
TLAG, the normalized determinant of PF was relatively in-
sensitive over the range of 50–200% of their mean value. For
V1I and CLDI the normalized determinant was slightly more
sensitive with a 33% and 50% increase in these parameter
values causing a 5% reduction and a 67% and 200% increase
resulting in a 10% reduction, respectively. In contrast, the
design was rather sensitive to the choice of CLI, whereby a
decrease in the value of CLI increased the normalized deter-
minant of the design dramatically, whereas an increase in its
value by 17% and 33% caused a decrease by 5% and 10%,
respectively. At the extreme value of CLI tested (a 200%
increase), the value of the normalized determinant dropped
by 30%. The optimization procedure was repeated with CLI

fixed to 58.4 L ? h−1 (200% of the population mean value) to
test whether (a) the optimization of option 3 remained opti-
mal but just provided less information about the pharmaco-
dynamic parameter estimates, or (b) whether there was a
more optimal design. It was found that the optimal sampling
times remained virtually unchanged (0.0, 2.8, 12.0, 147.5 h),
despite the larger value of CLI. Hence, the design of option 3
remained optimal but less efficient.

The optimal sampling times from option 3 were 0.2, 2.8,
12, and 148 h, dosing every 12 hr. The upper and lower
bounds for the marginal sampling windows were 0–0.5 h, 1.9–
4.4 h, 9.8–12 h, and 145–154 h. Sampling within these windows
will yield a design that is attainable clinically and will provide
at least 95% of the information of the optimal design.

DISCUSSION

This study represents, to our knowledge, the first attempt
to optimize a population pharmacodynamic experiment. Op-
timization by any of the three options described yielded more
parsimonious designs than the baseline trial design. Any one

of these options would be a reasonable choice clinically, al-
though option 3 involving optimization of group structure
yielded the most parsimonious designs. For option 1, it is
interesting that splitting the samples between the first and last
dose provided the best design, presumably because this gives
the widest range of concentrations. This is supported by op-
tion 2 where the optimal dose was found to be the largest
permissible dose, again giving the widest range of concentra-
tions. In standard nonlinear regression, the two concentra-
tions that give an optimal design for a hyperbolic model (e.g.,
the Emax model) with constant variance error are at the up-
per permissible boundary and at EC50 (16). Increasing the
upper bound increases the efficiency of the design. Option 3
is a more sophisticated approach, compared to the previous
options, and allows the design to include the group structure,
i.e., number of subjects per group and number and timing of
observations per subject. The optimal design included a
sample at 0.2 h, which is less than the TLAG (0.22 h), indicat-

Table 4. Optimal Designs Using Option 3 Where Dose is 32 mg for
All Subjects and There Are Four Groups (k 4 4)

Design Relative
efficiencya

%

Total number
of observations

Ntot

Equivalent Ntot

(equivalent N)ni Nk

1 78 <1% 312 47,200 (47,200)
2 39 53 312 592 (296)
3 26 84 312 370 (124)
4b 19.5c 92 312 340 (85)
6 13 81 312 385 (64)
8 9.75c 76 312 412 (52)

ni: Number of observations per subject; Nk: number of subjects per
group; k: number of groups, N: total number of subjects in the trial.
a All designs are compared to the baseline trial design.
b Best design with option 3.
c Uneven group sizes, e.g., Nk 4 19.5 were split among the four

groups as 19, 19, 20 and 20.

Fig. 1. Change in the normalized determinant of the design with
respect to a change in the mean population pharmacokinetic param-
eter value for optimal design with option 3. The dashed lines repre-
sent a decrease of 5% of the normalized determinant and the dotted
lines represent a decrease of 10%. The effects of changes in CLI (1a),
CLDI (1b), and V2I (1c) are shown.
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ing that a time when the concentration is zero is required.
This exercise-test could be performed predose without loss of
information. Optimizing within the constraints of the maxi-
mum number of observations (Ntot) being equal to 312 pro-
vided a design that proved to be almost as efficient as the
baseline trial design with only 40% of the number of samples.
Almost all of the standard errors of the population param-
eters were within acceptable levels [defined as <20% for
mean parameter values and <50% for variance parameter
values (17)]. The efficiency of the design was maintained over
a reasonable sampling window for each time. In general, the
sampling windows became larger relative to time of the
sample.

A pharmacodynamic experiment is more complex to de-
sign than a pharmacokinetic experiment because the vector of
input variables is not known explicitly. In phramacokinetic
experiments, the input vector includes dose and sampling
times, whereas for a pharmacodynamic study it is desirable
for the input vector to be concentrations. In our case, we used
dose and sampling times as the input vector, which in con-
junction with the pharmacokinetic model are used to compute
the expected concentration. It is essential, therefore, that the
pharmacodynamic design is robust to specification of the
pharmacokinetic model parameter values. This was shown in
the sensitivity analyses where the design had low sensitivity to
almost all of the pharmacokinetic parameters except CLI

(Fig. 1a). Note that perturbations in the value of this param-
eter both increased and decreased the information in the de-
sign. This change in information with respect to different val-
ues of CLI is not unexpected because it has been shown that
higher doses yield more information, and a low value of CLI

is tantamount to a higher dose (and vice versa). Similarly,
high values of V1I (resulting in lower peak concentrations)
will reduce the information in the design, although the loss of
information is less than for CLI. Any loss of information due
to a larger than expected value of CLI can be accommodated
for by increasing the number of subjects in the study (A ≈
100). However, it should be considered that the original phar-
macokinetic analysis was undertaken in healthy volunteers
who will be younger and fitter compared to a typical patient
population likely to receive ivabradine. Therefore, CLI in the
target population may well be lower than our population es-
timate, thereby increasing the information in our design. It
should be noted, however, that between-subject variability in
the pharmacokinetic parameters was not taken into account
and we did not perform a global optimization of the pharma-
cokinetic/pharmacodynamic problem. To our knowledge this
has not been done using an approach based on PF and would
require further statistical development.

There remain a number of potential limitations of the
integration of optimal population designs into early phase
clinical trials. Certainly from phase I to II there may be lim-
ited or no information on the effect of the study drug in the
target population, and some extrapolation may be needed in
order to gain inference about the new study population from
the existing data. This poses some potential problems for op-
timal design because there may be misspecification of the
population parameter values and indeed the model. There-
fore, in designing a phase II trial for ivabradine to include
pharmacodynamic modeling as a secondary endpoint, it
would seem prudent to consider a generalization of the results
presented, such as (a) the higher the dose, the more informa-

tion in the design (note: dosing should be based on reasonable
clinical judgement and the use of lower doses can be com-
pensated in the design by investigating more patients); (b)
samples should be taken after the first dose and at steady-
state in approximately a 3:1 ratio; (c) timing of the sample(s)
at steady-state is not critical; (d) a sample for which the con-
centration is zero is important; (e) decreasing the number of
samples per patient below the number of fixed parameters is
not desirable; and (f) when the number of samples per patient
equals the number of fixed parameters, only a single group is
needed where all sampling times can be the same for all sub-
jects. In addition, it should be noted that the D-optimal sam-
pling times given here are dependent on the current model
and parameter values, and therefore, they should be consid-
ered a guide rather than a rule. It would not be unreasonable
to consider a composite design whereby the optimal sampling
structure is combined with additional sampling times spread
across an appropriate design window. A composite design
could also take into consideration likely sampling times for
pharmacokinetic parameter estimation, allowing both phar-
macokinetic and pharmacodynamic sampling at the same
time. However, implementation of an optimal population de-
sign based on phase II for phase III would seem considerably
more realistic in that information regarding use in the target
population would be available and the pharmacokinetic-
pharmacodynamic model would be more accurately charac-
terized. Therefore, a more parsimonious design such as that
presented here for a sparse sampling schedule in phase III
would be potentially of considerable benefit. There are also
concerns in phase III trials about adherence, which is usually
not considered in many early phase clinical trials. The effect
adherence will have on trial design is also in question. These
issues are complex and have been investigated by others (18).
In a very limited sense we have partially addressed the issue
of compliance by assessing the sensitivity of the design to
specification of the pharmacokinetic parameter values (the
estimates of which will be affected by unknown poor compli-
ance behavior). Additional limitations of the optimal design
methodology used here include the use of an exact design
technique and the use of a marginal sensitivity analysis. In the
former case, the split of sampling times (option 1) was opti-
mized separate from the group structure (option 3). While
this will not affect the characteristics of the design found in
this study, there may be a more optimal design not considered
here. In the latter case, the marginal sensitivity analysis was
preferred over a multivariate sensitivity analysis, which due to
the convoluted nature of the surface of the determinant of PF
over the joint distribution of the parameters, was considered
too complex to assess in this study.

In conclusion, an optimal population pharmacodynamic
design is presented. The design is explored under a number of
conditions of sampling times, dose levels, and group struc-
tures, allowing both specific and general conclusions about
the design to be obtained.
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